1 (a) Simplify	[2]
$\sqrt{50}$ - $\sqrt{18}$	[3]
giving your answer in the form $a\sqrt{2}$, where a is an integer.	
(b) Hence, or otherwise, simplify	
$12\sqrt{3}$	
$\sqrt{50} - \sqrt{18}$	[4]
giving your answer in the form b \sqrt{c} , where b and c are integers and	
$b \neq 1$	
2. (a) Write down the value of $32^{\frac{1}{5}}$	[2]
(b) Simplify fully $(32x^5)^{\frac{-2}{5}}$	[2]
3. (a) Write $\sqrt{80}$ in the form c $\sqrt{5}$, where c is a positive constant	[3]
(b) A rectangle R has a length of $(1 + \sqrt{5})$ cm and an area of $\sqrt{80}$ cm ² .	
Calculate the width of R in cm. Express your answer in the form $p + q \sqrt{5}$, where p and q are integers to be found.	
4. Simplify $(3\sqrt{5})^2$	[5]
$(2\sqrt{5})^2 + \sqrt{5}$	[2]
(b) Express $\frac{(3\sqrt{5})^2 + \sqrt{5}}{7 + 3\sqrt{5}}$ in the form m+ n $\sqrt{5}$, where m and n are integers.	[4]
5. (a) Express 9^{3x+1} in the form 3 ^y , giving y in the form $ax+b$, where a and	[3]
b are constants.	
(b) Given that $y = 2^x$,	
i. Express 4^x in terms of y	[2]
ii. Hence, or otherwise, solve 8 (4^x) -9 (2^x) + 1 = 0	[5]
6. The line AB has equation $5x + 3y + 3 = 0$.	
(a) The line AB is parallel to the line with equation $y = mx + 7$. Find the value of m.	[3]

The point with coordinates ($2k+3$, $4-3k$) lies on the line AB. Find the value of k.	[4]	
7. The line AB has equation $3x + 5y = 7$.		
(a) Find the gradient of AB	[2]	
(b) Find an equation of the line that is perpendicular to the line AB and		
which passes through the point (-2, -3). Express your answer in the		
form $px + qy + r = 0$, where p, q and r are integers	[5]	
(c) The line AC has equation $2x - 3y = 30$. Find the coordinates of A	[0]	
8. The point P has coordinates ($\sqrt{3}$, $2\sqrt{3}$) and the point Q has		
coordinates ($\sqrt{5}$, $4\sqrt{5}$). Show that the gradient of PQ can be expressed		
as $n+\sqrt{15}$, stating the value of the integer n.	[6]	
9. Given that $y=2^{x}$, show that $2^{2x+1}-17(2^{x})+8=0$	[0]	
can be written in the form		
$2y^2 - 17y + 8 = 0$		
Hence solve	[4]	
$2y^2 - 17y + 8 = 0$	[4]	
10. Solve the following	[4]	
y - x = 4		
$2x^2 + xy = -1$	[8]	

The line l_1 , shown in Figure 1 has equation 2x + 3y = 26The line l_2 passes through the origin *O* and is perpendicular to l_1 (a) Find an equation for the line l_2

The line l_2 intersects the line l_1 at the point *C*.

Line l_1 crosses the y-axis at the point *B* as shown in Figure 1.

(b) Find the coordinates of B and C

[4]